
COMP 537: Cryptography Fall 2024

Programming Assignment 1: Private Notes

In this assignment, you will be implementing the back-end for a private note-taking system using
the Python cryptography library. Please carefully read the entire specification and work out a design
before starting your implementation. Your submission will be primarily evaluated for security. The
starting implementation we provide satisfies all of the functionality requirements, but none of the security
requirements.

Acknowledgments. This assignment is adapted from a similar assignment from Stanford’s CS255 course
by Prof. Dan Boneh and UVA’s CS6222 course by Prof. David Wu.

1 Overview

Note-taking applications are a very helpful tool for quickly jotting things down, keeping track of lists, and
drafting messages or documents. Hosting the storage of notes in the cloud provides the added benefit that
users can access their notes from multiples devices without losing their notes if a device is lost or broken.
Unfortunately, this also means that the note-taking service provider has access to all of a user’s notes. This
is especially bad as note-taking tools are frequently used for short-term storage of sensitive information.

In this assignment, you will show that it is possible to enjoy the benefits of a note-taking application
with cloud storage without compromising user privacy along the way. In particular, you will design and
implement the back-end for a privacy-preserving note taking application. As part of this project, you will
be making use of a number of symmetric cryptographic primitives that we have discussed so far. Since it
is rarely advisable to implement these low-level cryptographic primitives, you will be using the Python
cryptography library in your implementation.

2 Private Note Taking

You will implement the API for a back-end implementation of a note taking application. The note taking
application will internally maintain a key-value store that maps note titles (keys) to notes (values). For our
purposes, note titles will always be unique. The API will support serialization and deserialization methods
for loading and writing the contents of the notes to disk (or cloud storage), as well as methods for adding,
fetching, and removing notes. We impose the following security requirements on both the serialized as
well as the in-memory representation of the key-value store:1

• String encoding: Throughout this project, you may assume that all notes and titles are ASCII strings.

• Title encoding: We want to hide the note titles while still enabling efficient look-ups. To support
this, instead of using the title x itself as the key in the key-value store, you will use HMAC(k, x),
where k is an HMAC key.

1Ensuring that the in-memory representation of the key-value store is encrypted is a good precaution (as would storing
cryptographic keys in a protected segment or in a hardware security module). However, we emphasize that this is still not
sufficient for security against an adversary that has access to memory. For instance, standard features and library functions in
Python may leave data in memory that leak secrets—both on the call stack and in garbage-collected structures on the heap.

https://cryptography.io/en/latest/
https://cryptography.io/en/latest/

• Note storage: The notes in the key-value store should be encrypted using an authenticated encryp-
tion scheme. Since there can be a large number of notes stored, each note should be encrypted
and stored separately. You should not encrypt the entire contents of the key-value store as a single
ciphertext (otherwise, you would have to decrypt all the notes for each lookup).

• Hiding note length: The application should not leak any information about the length of the notes
or titles. To make this feasible, you may assume that the maximum length of any note is 2KB.

• Key derivation: The note-taking application itself is protected by a password. When the user
initializes the application or loads the notes from disk, they must provide the password. The
password should be used to derive a single 256-bit (32 byte) source key. If you need additional
cryptographic keys, you should find a way to derive them from the source key. In this assignment,
you will use the password-based key-derivation function (PBKDF2) with 2,000,000 iterations of
SHA-256 to derive your source key:2

kdf = PBKDF2HMAC(algorithm = hashes.SHA256(), length = 32, salt = <YOUR SALT HERE>,
iterations = 2000000)

key = kdf.derive(bytes(password, ’ascii’))

The application is not allowed to include the password in its source code (or any value that leaks
information about the password in its serialized representation). For instance, including a hash of
the password is not secure. Because PBKDF2 is designed to be a “slow” hash function, you can call
it at most once in your implementation.

• Password salting: When usingPBKDF2 to derive keys, you should always use a randomly-generated
salt.3 In this assignment, you should use a randomly-generated 128-bit salt (e.g., can be obtained by
calling os.urandom(16)). The salt does not have to be secret, and can be stored in the clear in your
serialized representation.

• No external sources of randomness: Since good sources of randomness are expensive and not
always available, you cannot use any external sources of randomness other than for generating
the salt for PBKDF2. This means that you cannot call methods like AESGCM.generate_key or
secrets.choice anywhere in your implementation. All cryptographic keys and sources of ran-
domness that you rely on should be (securely) derived from the source key output by PBKDF2.

• No secrets in code: You should not rely on any hard-coded secrets in your source code. You should
assume that the adversary has complete knowledge of your source code.

3 Threat Model

When designing any system with security goals, it is important to specify a threat model. Specifically, we
must define the power of the adversary, as well as the condition the adversary must satisfy in order to
be considered to have “broken” the system. We define security via the following game-based definition
(similar in flavor to notions like CPA security of PRF security).

2At a high-level, PBKDF2 derives the key by applying SHA-256 to the (salted) password 2,000,000 times. Since we are using
SHA-256 as our underlying hash function and the block-size of SHA-256 is 256-bits, the output of PBKDF2 is also 256-bits.

3Using a random salt of sufficient length protects against common preprocessing attacks such as an offline dictionary attacks or
rainbow tables.

The note taking application plays the role of challenger and interacts with an adversary that is able
to make a sequence of adaptive queries (as governed by the API of the note taking application). The
challenger’s response to these queries depends on a bit b ∈ {0,1} (as in the CPA security and PRF security
games). In this case, we allow the adversary to make the following queries:

1. Insertion query: The adversary specifies a triple 〈title,note0,note1〉. The challenger adds the
title-note pair 〈title,noteb〉 to the database.

2. Retrieve query: The adversary specifies a title and the challenger replies to the adversary with the
associated note.

3. Remove query: The adversary specifies a key (title) that the challenger must remove from the note
database.

4. Serialize query: The adversary requests the challenger to serialize the current contents of the note
taking application. The adversary then provides the challenger a new string which the challenger
immediately deserializes and uses the result as the new state of the note taking application4.

As in the PRF and CPA games, we say that the adversary wins the game if its probability of outputting 1
(for its guess of the bit b) differs by a non-negligible amount when b = 0 and when b = 1. Unlike the PRF
and CPA games, however, we need an additional restriction for our security definition here. In particular,
we will only allow adversaries whose queries are “admissible” in the following sense:

• Whenever the adversary makes a retrieve query on a title t , its last insertion query adding notes for
title t , must have the property that note0 = note1.

Observe that without this restriction, the adversary could trivially win the game. Namely, the adversary
can make an insertion query on a title t with distinct notes note0 and note1, and then make a retrieve
query for title t to learn noteb (and correspondingly, the challenger’s bit b).

This security definition captures the fact that even if the adversary is able to exert substantial control
over the contents of the note database and can even read the contents of some of them (e.g., if a user
voluntary shares something they had written down), it still is unable to learn anything about any other
notes in the database (i.e., we have semantic security for all titles t for which the adversary did not make a
retrieve query).

For this project, you will not be required to give a formal proof that your system fulfills the security
definition we have just stated, but such a proof should indeed be possible. We note here that this definition
immediately precludes a number of attacks such as swap attacks and rollback attacks:

• Swap attack: In a swap attack, the adversary interchanges the values corresponding to different keys.
For instance, the adversary might switch the entries for Groceries and Secret Investigations.
Then, when the user tries to access or share a grocery list, they share sensitive secret information
instead.

• Rollback attack: In a rollback attack, the adversary can replace a record with a previous version
of the record. For example, suppose the adversary was able to retrieve the key-value store shown
above. At some later time, the user changes their note for Secret Investigations to include a
new important secret value, which would update the value for Secret Investigations in the

4This models a malicious cloud provider who may attempt to tamper with a user’s notes

key-value store. In a rollback attack, the adversary replaces this updated record with the previous
record for Secret Investigations.

Observe first that authenticated encryption by itself does not protect against this attack. In your
implementation, you should compute a SHA-256 hash of the serialized contents of the notes. You
can assume this hash value can be saved to a trusted storage medium (inaccessible to the adversary)
such as an external flash drive. Whenever you load the application from disk, you should verify that
the hash is valid. This way, you can be assured that the contents of the key-value store have not
been tampered with.

In this assignment, you must implement some mechanism to defend against swap attacks together with
the above method to defend against rollback attacks. Depending on your design, your defense against
rollback attacks might also protect against the swap attacks described earlier. However, you must still
implement an explicit defense against swap attacks. In other words, the defenses you develop must work
independently of one another. Even if a SHA-256 hash is not provided from trusted storage, your scheme
must be secure against an adversary that swaps two records (or performs other non-rollback attacks on
your scheme).

4 API description

Here are descriptions of the functions you will need to implement. For each function, we also prescribe
the run-time your solution must achieve (as a function of the number of entries n in the notes database).
We will assume that the input values (titles and notes) are of length O(1), and regard each operation on
a dictionary as a constant-time operation. Of course, if your solution is asymptotically more efficient
than what we prescribe, that is acceptable. The starter code we provide you contains a basic insecure
implementation that satisfies all of the functionality requirements.

4.1 Notes.__init__(password, data = None, checksum = None)

• Inputs:

– password (string): password (an ASCII string) for the note taking application.

– data (string): hex-encoded serialization of the note database; defaults to None

– checksum (string): hex-encoded SHA-256 checksum of the notes database for rollback pro-
tection; defaults to None

• Raises: ValueError if the provided data could not be deserialized properly (due to tampering,
incorrect password, or if provided, an incorrect checksum)

• Running time: O(n)

This is the constructor for the note database. If data is not provided, then this method should initialize an
empty note database with the provided password as the password. Otherwise, it should load the notes
from data. In addition, if the checksum is provided, the application should additionally validate the
contents of the notes database against the checksum. If the provided data is malformed, the password is
incorrect, or the checksum (if provided) is invalid, this method must raise a ValueError.

If this method is called with the wrong password, i.e., not the password used to initialize the provided
data, your code must return a ValueError, and no other queries can be performed unless the client calls
init successfully. It is incorrect for your application to pretend like nothing is wrong when the wrong
password is provided and only fail to answer queries later.

4.2 Notes.dump()

• Inputs: None

• Return: data (string) and checksum (string)

– data (string): hex-encoded representation of the notes that can subsequently be loaded to
initialize the application (via Notes.__init__(...))

– checksum (string): hex-encoded hash of the contents of the serialized representation

• Running time: O(n)

This method should create a hex-encoded serialization of the contents of the notes database, such that it
may be loaded back into memory via a subsequent call to Notes.__init__(...). It should additionally
output a SHA-256 hash of the serialized contents (for rollback protection).

4.3 Notes.get(title)

• Inputs:

– title (string): title (an ASCII string) to fetch

• Return: note (string): the note associated with title and None if not present

• Running time: O(1)

If the requested title is in the notes database, then this method should return the note associated with the
title. If the requested title is not in the database, then this method should return None.

4.4 Notes.set(title, note)

• Inputs:

– title (string): title (an ASCII string) to add

– note(string): note (an ASCII string) associated with the title to store in the database

• Return: None

• Raises: ValueError if the provided note exceeds the maximum length (2KB)

• Running time: O(1)

This method should insert the title together with its associated note into the database. If the title is already
in the database, this method will update its value. Otherwise, it will create a new entry. If note is more
than 2KB, this method should abort with a ValueError.

4.5 Notes.remove(title)

• Inputs:

– title (string): title (an ASCII string) to remove

• Return: success (bool): whether the title was found in the database or not

• Running time: O(1)

Removes the target title from the database. If the requested title is found, then this method should remove
it and return True. If the title is not found, return False.

4.6 API Usage

The API is designed to be called by a front-end application that provides a user interface for note retrieval.
Whenever Alice requests a note by name, creates/edits a new note, or deletes a note, the API will make
calls to get, set, or remove, respectively.

When Alice closes the application, or when there is some application-dependent “save” event, the
dump function will be called. The resulting data will be saved to disk by the front-end application, and the
checksum, if used by the calling application, will be stored separately in a protected place.

When Alice opens the front-end application or when there is some application-dependent “load”
event, init will be called. The data used will be loaded from disk and Alice will provide the password.
If the application is using the checksum, it will load checksum from the protected storage. We assume
that neither Alice nor any attacker can modfiy the contents of the protected storage at any time – only the
honest application can update this storage. If Alice is creating a new account in the application, init will
be called with no data and the password provided by Alice will become the password required to access
the resulting data again in the future.

5 Additional Hints, Notes, and Requirements

• The starter code (private_notes.py) contains a fully-functional note taking application that
illustrates the basic functionality requirements. We include a basic testing script (main.py) that
exercises some of the basic functionalities. 5 Please note that this script does not cover all of the
properties we will test during grading, and in particular, does not capture the security requirements.
You are encouraged to design additional test cases to evaluate the correctness and security of your
implementation.

• You cannot change the signatures of the methods we provide. If your implementation does not work
with our provided main.py script, then you will not receive any credit for the assignment. That said,
you are welcome to (and encouraged) to add additional helper methods in your implementation.

• Your design and implementation must satisfy the requirements from Section 2 as well as be provably
secure under our threat model in Section 3. While we do not require a formal security proof in your
submission, you should be prepared to provide one if requested.

5The starter implementation was tested with Python 3.10.12.

• For serialization and deserialization of basic Python data structures (including dictionaries, lists,
strings, byte-arrays, etc.), you can use the pickle library:

– ser_data = pickle.dumps(data).hex() will output a hex-encoded serialization of data.

– data = pickle.loads(bytes.fromhex(ser_data)) can be used to deserialize the data.

• To obtain a byte-array (needed for cryptographic methods) from an ASCII-encoded string, use
bytes(message, 'ascii'). To convert back from a byte-array to an ASCII-encoded string, use
message.decode('ascii').

• One way to convert integers into byte arrays is to use the to_bytes method. For example, if you
want an 8-byte array that represents the number n, you can write (n).to_bytes(8, 'little').

• For this assignment, you may only make the following assumptions (and nothing more):

– AES is a secure PRP.

– AES-GCM is an authenticated encryption with associated data (AEAD) scheme.

– HMAC (with SHA-256) is both a secure MAC and a secure PRF (on a variable-size domain).

– SHA-256 is a collision-resistant hash function.

– PBKDF2 (with SHA-256) is an ideal hash function (i.e., a “random oracle”); you can only invoke
PBKDF2 once on the password and only to generate a single 256-bit key (see Section 2).

You should only need to rely on these primitives in your implementation. While you are free to use
other algorithms that build upon these basic primitives, you will be responsible for figuring out how
to use them in a way that achieves the required security properties. Our reference implementation
only uses the primitives listed above.

• As stated in Section 2, the only source of external randomness you are allowed to use is for the
salt in PBKDF2. You can only call PBKDF2 once in your implementation, and you can only use
it to generate a 256-bit (32-byte) source key. If you need additional cryptographic keys, you must
securely derive them from the source key.

• Your implementation can only make use of standard Python modules and the cryptography library.
You will be using the library’s “hazardous materials” layer.

• Carefully think through your design before starting on your implementation. The number of lines
of code you need to write should be modest. As a point of reference, our reference solution file is
under 200 lines of Python code, and the diff with the starter code is even smaller:

$diff -y --suppress-common-lines base/private_notes.py private_notes.py | wc -l
126

6 Short-Answer Questions

In addition to your implementation, please include short responses (e.g., 1-5 sentences) to the following
questions regarding your design and implementation. You do not need to give formal proofs, but you
should be precise and include important details in your responses.

https://cryptography.io/en/latest/

1. Suppose an adversary is able to perform a swap attack (as described in Section 3). Show how such
an adversary can win the note taking security game. Note that you must say why the adversary you
construct is admissible for the security game.

2. Suppose an adversary is able to perform a rollback attack (as described in Section 3). Show how
such an adversary can win the security game. As before, you should say why the adversary you
construct is admissible.

3. Briefly describe your method for checking passwords.

4. Briefly describe your method for preventing the adversary from learning information about the
lengths of the notes stored in your note-taking application.

5. Briefly describe your method for preventing swap attacks (Section 3). Provide an argument for why
the attack is prevented in your scheme.

6. Optional feedback. How much time did you spend on this assignment? Did you find it too easy/hard
or just right?

7. Optional feedback. Please let us know if you have any feedback on the design of this assignment or
on the course in general.

Please submit your responses as a PDF file answers.pdf with your submission.

7 Submission Instructions

To submit your assignment, upload the following two files to Gradescope:

• private_notes.py: this file contains your implementation of the private notes system.

• answers.pdf: this file contains your answers to the short answer questions.

Do not submit any other files with your submission (e.g., do not submit your copy of main.py). If
submitting with a partner, please have one partner submit for both people, and please include your names
in a comment at the top of the python file.

Grading: The short answer questions are each worth 4 points. There are 16 points of basic automated
tests and 14 points of code review for security.

	Overview
	Private Note Taking
	Threat Model
	API description
	Notes.__init__(password, data = None, checksum = None)
	Notes.dump()
	Notes.get(title)
	Notes.set(title, note)
	Notes.remove(title)
	API Usage

	Additional Hints, Notes, and Requirements
	Short-Answer Questions
	Submission Instructions

