
COMP 537: Cryptography Fall 2024

Programming Assignment 2: Private Messaging

In this assignment, you are tasked with implementing a secure and efficient end-to-end encrypted
chat client using the Double Ratchet algorithm, a popular protocol that powers real-world chat systems
such as Signal and WhatsApp. As an additional challenge, you will include a “message reporting” feature
that encrypts a message that a user reports under a public key provided to you by the platform, so that a
moderator who works for the platform can review abusive messages. In your implementation, you will
make use of various cryptographic primitives we have discussed in class – notably key exchange, public
key encryption, digital signatures, and authenticated encryption. Because it is ill-advised to implement
your own primitives in cryptography, you should use an established library. In this case, we will use
the Python cryptography library. You will be provided with starter code that contains a basic template,
which you will be able to fill in to satisfy the functionality and security properties described below.

Acknowledgments. This assignment is adapted from a similar assignment from Stanford’s CS255 course
by Prof. Dan Boneh.

1 End-to-End Encrypted Chat Client

1.1 Implementation Details

Your chat client will use the Double Ratchet algorithm to provide end-to-end encrypted communications
with other clients. To evaluate your messaging client, we will check that two or more instances of your
implementation can communicate with each other properly.

We feel that it is best to understand the Double Ratchet algorithm straight from the source, so we
ask that you read Sections 1, 2, and 3 of Signal’s published specification here: https://signal.org/
docs/specifications/doubleratchet/. Your implementation must correctly use the Double Ratchet
algorithm as described in Section 3 of the specification, with the following changes and clarifications. Feel
free to use the code samples provided in the documentation as part of your solution.

• You will use HKDF with SHA256 to ratchet the Diffie-Hellman keys. Proper usage of HKDF is
explained in Section 5.2 of the specification.

• You will use HMAC with SHA256 to implement the symmetric key ratchet.

• You will use AES-GCM as the symmetric authenticated encryption algorithm.

• You will use curve P-256 as the elliptic curve for all public key operations.

• disregard the AD byte sequence input for the ratchetEncrypt and ratchetDecrypt functions in
the Signal specification. Message headers should still be authenticated.

• You do not need to handle and recover from dropped or out-of-order messages. You do not need to
worry about Section 2.6 of the specification. You can assume that a message being sent and received
together constitute an atomic operation, meaning if a message is sent, the very next action that

https://cryptography.io/en/latest/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/

occurs is that the same message will be received by the other party. It will never be the case that two
messages are sent before the first one is received. If you detect that a message has been blocked,
dropped, or received out of order, return None.

• The memory cost of key storage for your algorithm should always be O(1) and independent of
the number of messages sent. In order to satisfy this, your implementation will discard old keys
whenever a ratchet occurs.

• every client must create an initial DH key pair. They keys will be used to derive initial root keys for
new communication sessions and as the initial public key ratchet. Note that this means the root key
and the first DH key exchange output will be the same in your implementation.

• Public keys will be distributed through simple certificates. Each client generates its own certificate
upon initialization which contains its public key. The messaging server will receive certificates
generated by clients and sign them (with ECDSA signatures). The platform’s signature on each
certificate serves to endorse the authenticity of the certificate owner’s identity and to prevent any
tampering with the public key by an adversary. The signed certificates are then distributed to the
clients as needed so that each client can access the public keys of other clients using the system.

• Users can report messages that they feel abuse the platform. To report a message, the client will
encrypt the name of the sender and the message under the messaging server’s public key and send
it to the server. A moderator who works for the messaging service will then be able to decrypt
the message and check whether or not it violates platform policies. Reported messages will be
encrypted with the CCA-secure variant of El-Gamal encryption. Note that El-Gamal encryption is
not provided by the cryptography library, so you will have to use the algorithms that the library
does support to implement it.

1.2 Threat Model

The goal of the double ratchet algorithm is to provide forward secrecy: compromise of long term keys
or current session keys must not compromise past communications. Specifically, consider a person-
in-the-middle attacker Eve who sits between Alice and Bob. Eve sees every encrypted message passed
between Alice and Bob and writes all of them to persistent storage. Then at some point, Alice’s device is
compromised and Eve learns Alice’s current secret keys. Assume that Alice has deleted her keys for old
messages, as encouraged by the Signal specification. Your implementation must ensure that under this
scenario, Eve cannot decrypt any of the past messages in her persistent storage despite having full access
to Alice’s current keys.

After Alice’s keys are compromised, the adversary can now launch an active person-in-the-middle
attack where she can impersonate Alice or eavesdrop on all future messages. However, if Alice manages to
send a single message to Bob without the attacker being able to intercept it, your implementation must
ensure that the attacker loses all ability to decrypt communications once again. This property is called
break-in recovery.

Implementing the double ratchet algorithm as described in the Signal documentation is sufficient to
ensure both of these properties.

https://cryptography.io/en/latest/

2 API Description

Here are the descriptions of the methods you will need to implement.

2.1 Client.generateCertificate()

This method should initialize the messenger client for communication with other clients by generating
the necessary Diffie Hellman key pair for key exchanges. The public key should be placed into a certificate
to send to other clients. You are free to design your own certificate object, so long as it includes the name
of the user and the corresponding public key.

2.2 Client.receiveCertificate(certificate, signature)

This method takes a certificate from another client and stores it in the messenger’s internal state, so that
the client can now send and receive messages from the owner of that certificate. The second argument is
the messaging server’s signature on the certificate. You must verify the validity of the signature (using the
server’s public key, provided to you in the client’s constructor) to ensure that the certificate has not been
modified by an adversary. If you detect tampering, throw an exception.

2.3 Client.sendMessage(name, message)

Send an encrypted message to the user specified by name. You can assume that communicating users
have already received each others’ certificates. If you have not previously communicated, set up the
session by generating the necessary double ratchet keys according to the Signal spec. The process of
sending messages will follow the Signal specification as well.

2.4 Client.receiveMessage(name, header, ciphertext)

Receive an encrypted message from the user specified by name. You can assume that communicating
users have already received each others’ certificates. If you have not previously communicated, set up
the session by generating the necessary double ratchet keys according to the Signal spec. The process of
receiving messages will follow the Signal specification as well. If tampering is detected in any way, return
None. Otherwise, return the message that was received.

2.5 Client.report(name, message)

This method creates an abuse report with the provided name and message. The structure of the report
plaintext is up to you as long as it clearly allows a human moderator to see the name of the sender and the
message contents. The report plaintext is encrypted under the encryption public key of the messaging
server, provided in the client’s constructor. You will use a CCA-secure El-Gamal encryption scheme to
encrypt the report. To enable testing, this function has two outputs, the report plaintext and the report
ciphertext.

2.6 Server.signCertificate(certificate)

This method signs a provided certificate with the server’s signing key, which is provided to you in the
server’s constructor. You will sign the message with an ECDSA signature using SHA256 as the hash.

2.7 Server.decryptReport(ct)

This method decrypts and returns an abuse report using the server’s private decryption key, which is
provided to you in the server’s constructor.

3 Additional Instructions

The setup for this assignment is similar to that of Programming Assignment 1. In particular, you will
find starter code in messenger.py that you will modify and which should pass the tests in the testing
script main.py. As before, we will be using Python 3 for this assignment. You are encouraged to design
additional test cases to evaluate the correctness and security of your implementation.

You cannot change the signatures of the methods we provide, as your implementation must work
with our provided main.py script. That said, you are welcome (and encouraged) to add additional helper
methods in your implementation.

Your implementation can only make use of standard Python modules and the cryptography library.
You will be using the library’s “hazardous materials” layer. For serialization and deserialization of basic
Python data structures (including dictionaries, lists, strings, byte-arrays, etc.), you can use the pickle
library.

The number of lines of code you need to write should be modest. As a point of reference, our reference
solution file is 200 lines of Python code, and the diff with the starter code is even smaller:

$diff -y --suppress-common-lines base/messenger.py solution/messenger.py | wc -l
169

4 Short-Answer Questions

In addition to your implementation, please include short responses (e.g., 1-5 sentences) to the following
questions regarding your design and implementation. You do not need to give formal proofs, but you
should be precise and include important details in your responses.

1. In our implementation, Alice and Bob increment their Diffie-Hellman ratchets every time they
exchange messages. Could the protocol be modified to have them increment the DH ratchets once
every ten messages without compromising confidentiality against an eavesdropper (i.e., semantic
security)?

2. What if they never update their DH keys at all? Please explain the security consequences of this
change with regard to forward secrecy and break-in recovery.

3. The message reporting feature included in our messaging scheme is not adequate for use on an
actual messaging platform. What is one shortcoming of our approach?

4. Our messaging system relies on the platform to verify the authenticity of users’ public keys, but we
are also trying to give users confidentiality from the platform. Using this partial trust we place in it,
how could a malicious platform learn the contents of a message one user is sending to another?

5. How do end-to-end encrypted messaging apps help users avoid this problem? Feel free to look this
up or explore one of these messaging apps to answer this question.

https://cryptography.io/en/latest/

6. Optional feedback. How much time did you spend on this assignment? Did you find it too easy/hard
or just right?

7. Optional feedback. Please let us know if you have any feedback on the design of this assignment or
on the course in general.

Please submit your responses as a PDF file answers.pdf with your submission.

5 Submission Instructions

To submit your assignment, upload the following two files to Gradescope:

• messenger.py: this file contains your implementation of the messaging code.

• answers.pdf: this file contains your answers to the short answer questions.

Do not submit any other files with your submission. If submitting with a partner, please have one partner
submit on behalf of both of you, and please include your names in a comment at the top of the python file.

Grading: The short answer questions are each worth 4 points for a total of 20 points. There are 20 points
of automated tests (contained in main.py), and there are additionally 10 points of code review for security,
making a total of 50 points.

	End-to-End Encrypted Chat Client
	Implementation Details
	Threat Model

	API Description
	Client.generateCertificate()
	Client.receiveCertificate(certificate, signature)
	Client.sendMessage(name, message)
	Client.receiveMessage(name, header, ciphertext)
	Client.report(name, message)
	Server.signCertificate(certificate)
	Server.decryptReport(ct)

	Additional Instructions
	Short-Answer Questions
	Submission Instructions

